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Abstract 
Digital calibration techniques exploit the growing signal processing power of digital systems to correct the 

impairments of analog, mixed-signal and radiofrequency systems. Digital calibration is a generalization of 

equalization, which can be considered a form of calibration in which linear phenomena are corrected via 

digital linear filters. Digital calibration can be applied to linear and nonlinear systems, single-channel and 

multi-channel (time-interleaved) systems, and can help improve analog figures of merits for analog-to-digital 

converters, mixers, power amplifiers, analog filters, or entire systems such as receivers and beamformers. 

This work describes the main techniques and issues of digital calibration. 

1. Introduction 
Data acquisition systems process analog or radiofrequency signals to obtain a digital representation of the 

input signal. For instance, in a homodyne receiver, shown in Fig. 1, a signal of bandwidth 𝐵𝑊 around a carrier 

frequency 𝑓𝐶 is downconverted to obtain its complex envelop of bandwidth 𝐵𝑊/2, which can be sampled 

without loss of information at a sampling frequency 𝑓𝑆 ≥ 𝐵𝑊 and quantized with increasing accuracy into a 

word of 𝑁𝐵 bits. Each component in the receiver chain, mixers, filters, amplifiers and analog-to-digital 

converters (ADCs), introduce noise and distortions on the input signal, altering its behavior and reducing 

system performance, be it its resilience to jammers and interferers, the data link’s bit error rate, etc. 

 

Fig.1. Architecture of homodyne receiver. LNA is the low-noise amplifier, LPF the lowpass filter, ADC the 

analog-to-digital converter, DSP the digital signal processing section, and LO the local oscillator. 

There are two main classes of impairments in analog and radiofrequency circuits: deterministic and stochastic 

errors. Deterministic errors are functions of the input signal (which may or may not include interferers, for 

instance in a radar receiving a strong clutter return) and can be described as a function of the input 𝑥(𝑡), 

depending on a vector of unknown parameters 𝜃, which provides the output 𝑦(𝑡): 

𝑦(𝑡) = 𝑓(𝑥(𝑡), 𝜃)            (1) 

This model is general because it can include all sorts of deterministic effects, linear and nonlinear, and with 

or without memory. The parameter vector can model process variables like CMOS transistors’ threshold 

voltages (which have a certain spread over their nominal value) or environmental variables (such as ambient 

temperature). Stochastic errors are unpredictable and depend on random events, so that they are not 



function of the signal and cannot be represented as in (1). Additive noise can be written as an additive term, 

while other stochastic impairments such as jitter can be written as a random modulation of the amplitude 

and delay of the input waveform. Noise is unpredictable, though in principle correlated noise can be partially 

predicted and thus reduced, and it is not of interest for digital calibration, whose purpose is to correct 

deterministic errors. However, calibration can improve noise behavior, as shown in the following. 

Deterministic errors are predictable if the function 𝑓(∙) is known. Digital calibration techniques attempt to 

estimate and invert this function (for each realization of the parameter vector) to reconstruct the input signal 

𝑥(𝑡) from the output of the system 𝑦(𝑡). Calibration is called “digital” because it operates on the sampled 

output 𝑦[𝑛] ≡ 𝑦(𝑛𝑇𝑆), where 𝑇𝑆 = 1/𝑓𝑆, to obtain a digital representation of the input 𝑥[𝑛] ≡ 𝑥(𝑛𝑇𝑆). 

Because the input signal fulfils the Nyquist condition, as its bandwidth is by hypothesis lower than half the 

sampling frequency, it is possible to operate in the discrete-time domain without loss of information, except 

for quantization noise in the ADC and stochastic effects which cannot be corrected. 

Fig. 2 explains the process of digital calibration. The uncalibrated output signal 𝑦[𝑛] is processed by a digital 

system which produces the calibrated output 𝑧[𝑛], which is forced to be as close as possible to the input 

signal 𝑥[𝑛], except for stochastic errors and residual modeling errors. The digital processing section performs 

an operation 𝑧[𝑛] = 𝑔(𝑦[𝑛], 𝜃𝑠), which can be linear or nonlinear, and with or without memory, depending 

on a set of estimated parameters 𝜃𝑠. All the possible realizations of the system model 𝑓(𝑥[𝑛], 𝜃) should be 

corrected by the correction model 𝑔(𝑦[𝑛], 𝜃𝑠), if the parameter set is correctly estimated (𝜃𝑠 ≈ 𝜃) and if the 

correction model is the inverse of the system model: 𝑔(𝑓(𝑥[𝑛], 𝜃), 𝜃) ≈ 𝑥[𝑛]. 

 

Fig. 2. The idea of digital calibration: (analog) system model cascaded with (digital) correction model. 

Because only deterministic errors are calibrated, system performance is limited by noise when the model is 

sufficiently accurate and is correctly estimated. Hence, noise sets an upper limit on performance. When 

distortions dominate noise, there is a clear advantage in terms of accuracy in performing calibration. 

Furthermore, often distortion terms are concentrated in narrow bands, while noise is about evenly spread 

throughout the Nyquist band, so that even small deterministic narrowband errors can be observed in the 

uncalibrated output spectrum amidst a stronger wideband noise background. Digital calibration can improve 

the performance of such systems (in ADCs, narrowband errors influence the Spurious Free Dynamic Range, 

or SFDR, while all the error sources together influence the Signal-to-Noise-and-Distortion Ratio, or SNDR: in 

this case, digital calibration improves SFDR even if SNDR is not improved, because it is dominated by SNR). 

Some errors are stationary and others are time-varying. This implies that 𝜃 can be a function of the time 

index 𝑛, at least to some extent. Time-varying errors can be due to environmental variations, but also device 

aging or the system’s configuration (i.e., the orientation of a mobile receiver). Fast time-varying errors can 

be corrected only if the estimation of 𝜃[𝑛] is fast enough to ensure that 𝜃𝑠[𝑛] ≈ 𝜃[𝑛] at all times. This means 

that calibration needs to be in real time, through the use for instance of adaptive filters. When calibration is 

performed when the system is up and running, it is called “background” calibration, and estimation of 𝜃 is 

performed in the presence of the useful signal 𝑥[𝑛], which acts as nuisance for the estimation process. 

Otherwise, when estimation is performed in the absence of the useful but unknown signal, and possibly by 



injection of a known test signal, it is called “foreground” calibration. Time-varying errors require background 

calibration, while in principle foreground calibration can be used for stationary errors, or for time-varying 

errors which vary slow enough that they can be assumed constant between two consecutive estimations. 

The process of digital calibration can thus be conceptualized in three separate steps. Modeling is the 

specification of a model for correcting the impairments of the system to be calibrated. This is a theoretical – 

paper and pencil – step which takes into account the structure of the system and the properties of the analog 

impairments to specify a parametric class of functions 𝑔(𝑦[𝑛], 𝜃) which can be used to calibrate the system. 

Estimation is the identification of the error parameters 𝜃, and can be performed in the background or in 

foreground depending on the type of estimation strategy. Correction is the computation, in real time, of the 

correction function 𝑔(𝑦[𝑛], 𝜃𝑠) to obtain the calibrated output. Of these steps, only the last one always 

needs to be performed in real time, and requires actual digital resources, while the second step may or may 

not be performed in real time in the case of background calibration. 

Equalization can already be considered a form of digital calibration, in that an output signal 𝑦[𝑛] obtained by 

linear filtering of an input signal 𝑥[𝑛] is digitally filtered to obtain a combined frequency response without 

linear distortions, i.e., with flat gain and linear phase response. This is an example of linear impairments with 

linear effects which are corrected via a linear model. 

In inherently nonlinear systems, such as ADCs, linear errors can have nonlinear effects. For instance, linear 

gain errors in the stages of a pipeline ADCs [1-5] give rise to distortions, which can be corrected by estimating 

the gain of the stages and taking into account the estimated gain to correct the output of the ADC. The same 

problem occurs in multi-channel systems, such as time-interleaved ADCs [6-11] or I/Q mixers [12-13], where 

mismatches between nominally identical parallel channels cause nonlinearities in the form of aliasing 

distortions, i.e., spectral copies of the input signal translated in frequency by multiples of 2𝜋/𝑀, where 𝑀 is 

the number of channels. 

The most complex case is that of nonlinear impairments, such as amplifiers’ nonlinearities [14] caused by the 

nonlinear characteristic of active semiconductor devices, which cause nonlinear effects. In this case, models 

become more complex, parameter estimation may become harder, and the required digital processing power 

to compute the correction function grows with the complexity of the model. This type of distortions occurs 

for instance in power amplifiers and active filters. Nonlinear effects have an inherent spectral growth effect 

because nonlinearities in the time domain, such as 𝑥𝑝[𝑛] polynomial terms, become a 𝑝 − 1-fold self-

convolution of the spectrum 𝑋(𝜔), which causes the bandwidth of the resulting signal to grow. Fig. 3 shows 

spectral regrowth of a signal with rectangular spectrum through a nonlinearity of the second order. The 

output of analog nonlinearities often no longer fulfil the Nyquist condition, and obtaining models of the 

analog nonlinearity in the discrete-time domain must take into account aliasing effects which do not occur 

in the analog domain. 

 

Fig. 3. Spectral regrowth through a second-order nonlinearity. 

Section 2 recasts the common problem of equalization as a form of digital calibration. Section 3 describes 

the effect of linear (gain) errors on the behavior of inherently nonlinear systems such as pipeline ADCs. 



Section 4 describes the onset of aliasing distortions in multichannel systems such as I/Q mixers and time-

interleaved ADCs. Section 5 is about nonlinear calibration of nonlinear impairments, and describes the main 

modeling, identification and correction issues in this kind of calibration techniques. Section 6 summarizes the 

benefits of digital calibration for nonlinear systems, taking a system-level view of the issue. Section 7 

concludes. 

2. Equalization as digital calibration 
In equalization problems, the system model 𝑓(𝑥[𝑛], 𝜃) is an analog linear filter with unknown parameters 𝜃 

which usually takes into account the response of the communication channel, and the correction model 

𝑔(𝑦[𝑛], 𝜃) is a digital linear filter, usually a FIR filter, which is chosen so that 𝑔(𝑓(𝑥[𝑛], 𝜃), 𝜃𝑠) = 𝑔[𝑛, 𝜃𝑠] ∗

𝑓[𝑛, 𝜃𝑠] ∗ 𝑥[𝑛] ≈ 𝐺𝑥[𝑛 − 𝜏]. The cascading of linear systems is performed by convolution (operator ∗) and 

the result has flat gain 𝐺 and linear phase –𝜔𝜏 in the discrete-time angular frequency 𝜔, which corresponds 

to absence of linear distortions. 

If the input signal is Nyquist at the sampling frequency 𝑓𝑆 ≡ 1/𝑇𝑆 of the system, it is equivalent to work in 

the analog or discrete-time domains, as it is possible to work on 𝑥(𝑡) or on 𝑥[𝑛] ≡ 𝑥(𝑛𝑇𝑆) interchangeably. 

The system 𝑓(𝑥(𝑡), 𝜃) is an analog filter, but can also be modelled in the discrete-time domain because the 

output of a linear filter with a Nyquist input signal is also a Nyquist signal: 

𝑦(𝑡) = 𝑓(𝑥(𝑡), 𝜃) ≡ 𝑓(𝑡, 𝜃) ∗ 𝑥(𝑡) ↔ 𝑦[𝑛] = 𝑓[𝑛, 𝜃] ∗ 𝑥[𝑛]      (2) 

𝑓(𝑡, 𝜃) is the impulse response of the system in the analog domain, and 𝑓[𝑛, 𝜃] is the impulse response of 

the system in the discrete-time domain. Both depend on a vector of unknown parameters 𝜃. 

The correction model operates in the digital domain and the goal is to obtain a discrete-time impulse 

response 𝑔[𝑛, 𝜃𝑠] so that: 

𝜃𝑠 ≈ 𝜃 → 𝑧[𝑛] = 𝑔[𝑛, 𝜃𝑠] ∗ 𝑦[𝑛] ≈ 𝐺𝑥[𝑛 − 𝜏]        (3)  

If the impulse response (or equivalently the frequency response) of the system is correctly identified, it is 

thus possible to design a correction digital filter 𝑔 which removes linear distortions caused by 𝑓 so that the 

cascaded filter 𝑓 ∗ 𝑔 has flat gain and linear phase. 

3. Linear errors with nonlinear effects in ADCs 
Fig. 4 shows the architecture of a pipeline ADCs with 1-bit stages. Each stage, called multiplying DAC (MDAC), 

has an analog input 𝑥𝑖, an analog output 𝑦𝑖, and a digital output 𝐷𝑖 = {−1,1}. The input is normalized to be 

in the interval [−1,1], and so by construction is the output, because each stage is described by the equations: 

{
𝑦𝑖 = 2𝑥𝑖 − 𝐷𝑖
𝐷𝑖 = sign 𝑥𝑖

            (4) 

 

Fig. 4. Architecture of a pipeline ADC with single-bit MDAC stages. 



Because the stages are cascaded, 𝑥𝑖 = 𝑦𝑖−1, for 𝑖 = 2,… ,𝑁𝑆, where 𝑁𝑆 is the number of stages, and 𝑥1 =

𝑉𝑖𝑛. It can be easily proven by substitution that: 

𝑦𝑁𝑆
= 2𝑁𝑆𝑉𝑖𝑛 − ∑ 2𝑁𝑆−𝑖𝐷𝑖

𝑁𝑆
𝑖=1          (5) 

Noticing that the output of each stage is bounded between -1 and 1, that the output of the last stage is not 

processed by any other stage and so is unknown, and that its best estimate is 0 because of symmetry, we 

have: 

{
𝑉𝑖𝑛 =

𝑦𝑁𝑆
2𝑁𝑆

+ ∑
𝐷𝑖

2𝑖
𝑁𝑆
𝑖=1 ≈ ∑

𝐷𝑖

2𝑖
𝑁𝑆
𝑖=1

|
𝑦𝑁𝑆
2𝑁𝑆

| ≤
1

2𝑁𝑆

          (6) 

The pipeline ADC can reconstruct the input waveform by means of the digital outputs 𝐷𝑖, and the 

reconstruction error 
𝑦𝑁𝑆
2𝑁𝑆

 is bounded in the interval [−
1

2𝑁𝑆
,
1

2𝑁𝑆
] and vanishes to zero as the number of 

pipelined stages increases. 

The problem arises when the gain of each stage is not known [1-5], for instance if, because of linear errors, 

the input-output relation of each stage becomes, for some −1 ≪ 𝜖𝑖 ≪ 1: 

{
𝑦𝑖 = 2𝑥𝑖 − (1 + 𝜖𝑖)𝐷𝑖

𝐷𝑖 = sign 𝑥𝑖
           (7) 

In this case, the reconstruction formula 𝑉𝑖𝑛 ≈ ∑
𝐷𝑖

2𝑖
𝑁𝑆
𝑖=1  gives rise to errors proportional to 𝜖𝑖𝐷𝑖: 

𝑉𝑖𝑛 =
𝑦𝑁𝑆
2𝑁𝑆

+ ∑
(1+𝜖𝑖)𝐷𝑖

2𝑖
𝑁𝑆
𝑖=1 ≈ ∑

(1+𝜖𝑖)𝐷𝑖

2𝑖
𝑁𝑆
𝑖=1 ≈ ∑

𝐷𝑖

2𝑖
𝑁𝑆
𝑖=1 + ∑ 𝜖𝑖

𝐷𝑖

2𝑖
𝑁𝑆
𝑖=1      (8) 

Because 𝐷𝑖 are nonlinear functions of the input signal, distortions arise when the gain errors are different 

from zero. However, if the gain errors are not zero but are known, it is possible to compute (8) directly, and 

reconstruct the input signal exactly, except for the term in 𝑦𝑁𝑆
 and the residual calibration error due to 

inaccurate estimations of the gain errors. Of course, also stochastic errors are not corrected by this process. 

Pipeline ADCs with poor SFDR and THD can thus be made more accurate if a technique to estimate the gain 

errors is found, provided that gain errors dominate distortions and the estimation process is sufficiently 

accurate. Background calibration techniques exist for this kind of problems [1, 4-5], including errors due to 

memory effects [3] in which the output also depends (linearly) on the previous history of the signal. 

A fundamental problem with background calibration is that the error terms to be estimated, 𝜖𝑖𝐷𝑖, have very 

low power with respect to the input signal. In a pipeline ADC with 𝑇𝐻𝐷 = −40𝑑𝐵, for instance, gain errors 

are about 40dB below the signal. To improve linearity to -80dB, the gain errors must be estimated with an 

accuracy of 40dB, and estimation is performed with a nuisance input signal 80dB above the required 

estimation accuracy. This problem has been greatly reduced with split-ADC techniques [4-5], and with other 

techniques based on spectral separation [1] of the signal and error terms to allow faster estimation. 

4. Linear errors with nonlinear effects in multichannel architectures 
Many electronic systems assume the presence of two or more nominally identical channels which operate 

on the same input. For instance, complex mixers [12-13] extract the in-phase and quadrature components of 

a radiofrequency signal by mixing it with a quadrature signal at the carrier frequency 𝑓𝐶, i.e., by multiplying 

the input signal by cos 2𝜋𝑓𝐶𝑡 and sin 2𝜋𝑓𝐶𝑡. Errors arise when the two sinusoidal signals have different 

amplitude and their phases are not in perfect quadrature. 

Fig. 5 shows a two-channel time-interleaved system. Time-interleaving is used to increase the overall 

sampling frequency (but not the bandwidth) of an ADC by using multiple ADCs in parallel, used in time-



interleaved fashion [6-11]. The first ADC digitizes the even samples of the input signal, and the second the 

odd samples. Combining the two ADCs’ outputs it is possible to reconstruct the input signal, as both the even 

and odd samples are known. 

 

Fig. 5. 2-channel time-interleaved ADC with clocking scheme. 

It is however assumed that the two channels have identical offsets and gain, and that the clock timing is 

perfectly spaced by one sampling period, so that the first ADC’s output is 𝑥[2𝑛] and the second ADC’s output 

is 𝑥[2𝑛 + 1]. If the two ADCs have mismatches, i.e., there are offset, gain or timing differences, 

reconstruction produces aliasing. Consider for instance the first ADC to have unitary gain and the second ADC 

to have a gain 1 + 𝜖𝐺. The two ADCs’ outputs are 𝑥[2𝑛] and (1 + 𝜖𝐺)𝑥[2𝑛 + 1]. There is thus a periodic gain 

modulation superposed on the signal, and gain modulation produces distortions. The output of the time-

interleaved ADC can be written as: 

𝑦[𝑛] = 𝑥[𝑛] + 𝜖𝐺
(1−(−1)𝑛)

2
𝑥[𝑛] = (1 +

𝜖𝐺

2
) 𝑥[𝑛] −

𝜖𝐺

2
(−1)𝑛𝑥[𝑛]      (9) 

The term (−1)𝑛𝑥[𝑛] ≡ 𝑒𝑗𝜋𝑛𝑥[𝑛] is, by the modulation theorem of the discrete-time Fourier transform, the 

input signal translated in frequency by 𝜋, i.e., by 𝑓𝑆/2. An input sinusoid with unitary amplitude and zero 

phase at a frequency 𝑓𝑖𝑛 is thus observed at the output of the time-interleaved ADC as two sinusoids, one of 

amplitude (1 +
𝜖𝐺

2
) at the correct frequency 𝑓𝑖𝑛, and the other of amplitude −

𝜖𝐺

2
 at the aliasing frequency 

𝑓𝑆

2
− 𝑓𝑖𝑛. The aliasing tone is nonlinear distortion, because no linear system can produce outputs at 

frequencies different from those of the input signal, but the source of the distortion is linear (a gain error). 

Digital calibration of multichannel systems, for instance time-interleaved and asynchronous time-interleaved 

ADCs and I/Q mixers, estimates the mismatches (offset, gain, timing, bandwidth…) between the channels and 

remove the aliasing terms. If for instance the gain error term 𝜖𝐺 is estimated, it is sufficient to scale the 

output of the second ADC by 1 + 𝜖𝐺 to remove the aliasing term at the output. 

5. Calibration of nonlinear errors  
The most complex applications of digital calibration are related to nonlinear impairments [15-18]. All devices, 

especially active ones, are nonlinear, and they behave as linear systems only within a certain range and with 

a certain level of accuracy. Nonlinear effects are usually modeled with nonlinear functions of the input signal, 

for instance polynomials. There is no general model for nonlinear effects, and many different models can be 

conceived. Some models have no memory and only depend on the instantaneous value of the input, others 

have memory and depend on the history of the input signal. 

Equation (10a) is an example of memoryless polynomial of order up to 𝑃, which is the simplest model for 

nonlinearities. It has no memory and has poor accuracy for complex nonlinearities with memory. Being based 



on a Taylor expansion, it is adequate for memoryless continuous distortions, while it cannot model accurately 

discontinuities in the input-output characteristic of the system. Equation (10b) is a Volterra non-recursive 

model with memory [15-16]. The model has order 𝑃, and each submodel (called kernel) of order 𝑖 = 0,… , 𝑃 

has memory 𝐿𝑖, meaning that the output depends on the actual input and its history until 𝐿𝑖 past samples. 

Volterra models are generalization of linear impulse responses and adequate for weakly nonlinear systems 

without discontinuities, but owing to the nested summations the number of coefficients for a kernel of order 

𝑖 and length 𝐿𝑖 is proportional to 𝐿𝑖
𝑖 . Finally, equation (10c) is the building block of many neural networks, 

the tanh perceptron. All these models are nonlinear, and the last two have memory. It is clear that high-order 

memory models have many free parameters, and quickly become computationally expensive to compute, 

and even more expensive to identify. 

𝑦[𝑛] = ∑ 𝜃𝑖𝑥
𝑖[𝑛]𝑃

𝑖=0          (10a) 

𝑦[𝑛] = ∑ ∑ …∑ 𝜃𝑖,𝑘1,…,𝑘𝑖𝑥[𝑛 − 𝑘1]… 𝑥[𝑛 − 𝑘𝑖]
𝐿𝑖
𝑘𝑖=𝑘𝑖−1

𝐿𝑖
𝑘1=0

𝑃
𝑖=0     (10b) 

𝑦[𝑛] = tanh(𝜃𝐿+1 + ∑ 𝜃𝑖𝑥[𝑛 − 𝑖]𝐿
𝑖=0 )       (10c) 

The “curse of dimensionality” of nonlinear models with memory is a huge problem in nonlinear calibration, 

and techniques to reduce the number of free parameters have been investigated. A priori restrictions which 

assume that many coefficients are zero are frequent. For instance, from (10b) a very simple model can be 

obtained assuming that 𝜃𝑖,𝑘1,…,𝑘𝑖 ≠ 0 only if 𝑘1 = 𝑘2 = ⋯ = 𝑘𝑖. These restrictions are sometimes 

theoretically founded, but are often not very accurate. A posteriori simplifications [15-16] may be more 

effective, and data-driven techniques to obtain simpler models by only using terms which improve accuracy 

and removing terms which have no impact on accuracy are often more effective. Model selection is a complex 

topic, and there appears to be no optimal technique for determining the best restricted model (i.e., the most 

accurate model given a certain number of parameters). Cross-validation, model identification and robustness 

are complex issues that must be considered when selecting the model. 

There is also no general framework for the estimation of nonlinear models, and for this reason many models 

are linear combinations of nonlinear functions of the input, where the vector parameter 𝜃 is a vector of 

weights. These models are called LIP, linear-in-the-parameters, and can be estimated with linear estimation 

techniques, for instance least squares algorithms. For background calibration techniques, LIP models are easy 

to estimate using linear adaptive filters, for instance LMS and RLS. Some models are not LIP, for instance 

neural network models exploiting single-layer or multi-layer perceptrons, and there are special techniques 

for their estimation. A LIP model can be written as a linear combination of arbitrary nonlinear functions 

𝑓𝑖(𝑥[𝑛]), which may have memory: 

𝑦[𝑛] = ∑ 𝜃𝑖𝑓𝑖(𝑥[𝑛])
𝑃
𝑖=0            (11) 

Nonlinear effects tend to produce intermodulation and distortion terms over larger bandwidths than the 

original signal, creating interferers and cross-coupling effects between different frequency bands. A peculiar 

issue in sampled systems is that the hypothesis that the input signal is a Nyquist signal is not sufficient to 

ensure that the output of the nonlinear system is also a Nyquist signal. Because of this, distortion terms may 

alias and fall back in the Nyquist band of the system. For instance, the third harmonic of a 11MHz sinusoid 

sampled at 40MSps should be at 33MHz, but falls at 7MHz after sampling. Modeling nonlinear systems 

affected by sampling aliasing may thus be tricky, because distortion terms appear at new frequencies. 

Nonlinear models and aliasing theory must be combined together to obtain sound models capable of 

handling these phenomena. 

As an example of application of nonlinear calibration, we consider a heterodyne receiver with 2GHz RF input, 

30MHz IF output, a signal bandwidth of 10MHz, and sampled at 40MSps. Distortions in the receiver are 

dominated by the anti-aliasing filter before the ADC, and are affected by aliasing of the third-order (and 



higher) distortion terms. 𝐻𝐷3 terms around 90MHz fall back in the Nyquist band [0,20𝑀𝐻𝑧] and must be 

taken into account, because they are visible in the output signal spectrum. What is not modelled cannot be 

corrected, and the inverse model must be able to estimate the aliased nonlinear terms to remove them. 

Fig. 6 shows the output of a 16-QAM waveform with and without nonlinear calibration. The output 

constellation of a 16-QAM waveform should be of 16 uniformly-spaced points in a 4x4 square, but without 

calibration and equalization there is strong intersymbol interference (ISI). This cannot be removed by linear 

equalization alone (Lin EQ), but requires a nonlinear model (called RFeVM) capable of handling nonlinear 

aliasing to be corrected. 

 

Fig. 6. Nonlinear calibration of 16-QAM receiver. 

6. Benefits of nonlinear calibration 
Nonlinear calibration is a complex endeavor. The modeling, estimation and correction steps of digital 

calibration techniques become more complex, the analytical and computational resources increase and 

model identification becomes harder. There is no single unifying theory and no model which is valid in every 

case, and the number of free parameters in the model easily becomes excessive. However, nonlinear 

calibration has potentially enormous benefits in electronic systems. 

More linear transmitters are less affected by spectral regrowth, which cause interference to nearby channels, 

called Adjacent Channel Interference (ACI), and reduce the capacity of tightly spaced frequency channels in 

communications systems. 

More linear receivers are less affected by interferences, for instance intermodulation products disturbing 

nearby frequency channels, and thus they can be made more robust to clutter (in radar systems), jammers 

(in radars and communication systems), and powerful interferers in nearby channels. 

More linear transmitters and receivers are less affected by nonlinear intersymbol interference (ISI), obtaining 

cleaner eye diagrams and potentially allowing the use of more complex modulation schemes. 

More linear systems in general can operate with larger signals and have larger gains, thus reducing the effect 

of noise and reaching higher levels of SNR, increasing communication capacity. For instance, in Fig. 7 a 

calibrated system has lower distortions (as depicted by the lower third-order harmonic line) and can be 

operated with a larger input power. Though noise cannot be calibrated away, unlike deterministic errors, its 

system effect can be reduced by maximizing SNR (at the expense of THD) and then improving THD by means 

of nonlinear calibration. 



 

Fig. 7. Signal, noise and distortions before (solid distortion line) and after (dotted distortion line) nonlinear 

digital calibration. Allowing higher input power, it is possible to improve both the SNR and the THD. 

7. Conclusions 
Digital calibration is the use of the rapidly increasing processing power of digital systems to reduce the effect 

of impairments in analog, mixed-signal and radio-frequency systems. Because the trend in increasing system 

complexity and digital processing power and power efficiency is inherent in the evolution of electronic 

technology, the applicability of digital calibration techniques increase with time. 

A coherent and systematic approach to digital calibration allows the determination of abstract concepts of 

interest in a variety of applications. The three steps of modeling, estimation and correction can be used to 

describe apparently dissimilar problems like linear equalization of the channel’s frequency response and 

nonlinear compensation of distortions in power amplifiers. Modeling requires a variety of theoretical 

approaches, tailored on the specific application: Volterra series, neural networks, multirate signal processing, 

adaptive filters and statistical estimation concepts are used to model the effects of analog impairments and 

to identify the underlying models. Model identification is a statistical and measurement problem, requiring 

the use of statistical tools, test signals and measurement instrumentation. Digital correction – and in 

background techniques also parameter estimation – is a problem of digital design. A large number of different 

skills, from analog and digital design to statistical, measurement and signal processing theory, must be 

combined together. 

Calibration at system level allows improving system performance by removing the effects of linear and 

nonlinear impairments. The end result is a system which is half analog (or radio-frequency) and half digital, 

where gain, timing or nonlinear errors are digitally compensated in a way that should be as transparent as 

possible to the final user. 

Abstracting beyond the single electronic system, it is also possible to interpret many problems in terms of 

digital calibration: for instance, a space-borne direction-of-arrival (DOA) estimation system for 

geolocalization of radiofrequency emitters on the Earth’s surface must compensate for the position and 

orientation (attitude) errors of the satellite. Estimating and correcting the effects of these errors can be 

interpreted as a problem of digital calibration.  
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